Ders AdıKodu Yerel KrediAKTS Ders (saat/hafta)Uygulama (saat/hafta)Laboratuar (saat/hafta)
Matematik 1MAT100157420
ÖnkoşullarYok
YarıyılGüz
Dersin Diliİngilizce, Türkçe
Dersin SeviyesiLisans
Dersin TürüZorunlu @ İstatistik Lisans Programı
Ders KategorisiTemel Meslek Dersleri
Dersin Veriliş ŞekliYüz yüze
Dersi Sunan Akademik BirimMatematik Bölümü
Dersin Koordinatörü
Dersi Veren(ler)Mustafa Düldül
Asistan(lar)ı
Dersin AmacıBu dersi tamamlayan öğrenci 1. Tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanma, 2. Fonksiyonların grafiğini, asimptot, kritik nokta, azalan/artan ve konkavlık inceleyerek çizme, 3. Maksimum minimum problemlerini kurma ve çözme, 4. Integral hesabın temel teoremini kullanarak belirli integral çözme ve uygulama, 5. Belirsiz integral yöntemlerini kullanma becerilerini kazanır .
Dersin İçeriğiFonksiyonlar: Fonksiyonlar ve Grafikleri, Trigonometrik Fonksiyonlar Limit ve Süreklilik: Değişim Oranları ve Eğrilerin Teğetleri, Bir Fonksiyonun Limiti ve Limit Kuralları, Sandviç (Sıkıştırma) Teoremi, Limitin Açık Tanımı, Tek Taraflı Limitler, Süreklilik, Süreksizlik Çeşitleri, Sürekli Fonksiyonlar, Ara Değer Teoremi, Sonsuzluğu İçeren Limitler, Grafiklerin Asimptotları, Türev: Teğetler, Normal Doğrular, Bir Noktada Türev, Bir Fonksiyon Olarak Türev, Bir Aralık Üzerinde Türev, Tek Taraflı Türevler, Türev Kuralları, Yüksek Mertebeden Türevler, Bir Değişim Oranı Olarak Türev, Trigonometrik Fonksiyonların Türevleri, Zincir Kuralı, Kapalı Fonksiyonlarda Türev, Lineerleştirme ve Diferansiyeller, Türevin uygulamaları: Fonksiyonların ekstremum değerleri, Kritik noktalar, Rolle Teoremi, Ortalama Değer Teoremi, Monoton Fonksiyonlar ve Birinci Türev Testi: Artan-Azalan fonksiyonlar, Yerel Ekstremumlar için Birinci Türev Testi, Konkavlık ve Eğri çizimi, Konkavlık için İkinci Türev Testi, Büküm Noktaları, Yerel Ekstremum için İkinci Türev Testi, y=f(x) Fonksiyonunun Grafiği, Ters Türevler, Belirsiz İntegral, Integral: Alan ve Sonlu ToplamlarlaTahminde Bulunmak, Negatif Olmayan Sürekli bir Fonksiyonun Ortalama Değeri, Sigma Notasyonu ve Sonlu Toplamların Limitleri, Riemann Toplamları, Belirli İntegral, Belirli İntegralin Özellikleri, Negatif Olmayan Bir Fonksiyonun Grafiğinin Altındaki Alan,Sürekli Bir Fonksiyonun Ortalama Değeri, Belirli İntegraller için Ortalama Değer Teoremi, Kalkülüsün Temel Teoremi: Temel Teorem Kısım 1, Temel Teorem Kısım 2, Toplam Alan, Belirsiz İntegraller ve Yerine Koyma Yöntemi, Değişken Dönüşümü ve Eğriler Arasındaki Alanlar, y’ye Göre İntegral Alma, Simetrik Fonksiyonların Belirli İntegralleri, Belirli İntegralin Uygulamaları: Dik-kesitler Kullanarak Hacim Bulmak, Disk Yöntemi, Pul Yöntemi, Silindirik Kabuk Yöntemi, Yay Uzunluğu, Dönel Yüzeylerin Alanları, Transandant Fonksiyonlar:Ters Fonksiyonlar ve Türevleri, Doğal Logaritma, Logaritmik Fonksiyonlar ve Türevleri, Logaritmik Türev, Trigonometrik Fonksiyonların İntegralleri, Üstel Fonksiyonlar, Üstel Fonksiyonların Türev ve İntegralleri, Belirsizlikler ve L’Hospital Kuralı, Cauchy Ortalama Değer Teoremi, Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve Türevleri, Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve Türevleri, İntegrasyon Teknikleri: Kısmi İntegrasyon, Belirli İntegraller için Kısmi İntegrasyon Formülü, Trigonometrik İntegraller, İndirgeme Formülleri, Trigonometrik Değişken Dönüşümleri, Rasyonel Fonksiyonların Kısmi Kesirlerle İntegrasyonu, Geneleştirilmiş (Imroper ) Integraller: I.Tip ve II. Tip Geneleştirilmiş (Imroper) integraller, Sonsuz Diziler ve Seriler: Diziler, Yakınsama ve Iraksama, Dizilerin Yakınsaklığı, Diziler İçin Sandviç(Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek, İntegral Testi, p Serisi , Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran ve Kök Testleri, Oran Testi, Kök Testi, Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi) , Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık Testi
Ders Kitabı / Malzemesi / Önerilen Kaynaklar
  • Thomas’ Calculus, 12th Edition, G.B Thomas, M.D.Weir, J.Hass and F.R.Giordano, Addison-Wesley, 2012
  • Thomas Kalkülüs (cilt 1-2 ) ,George B. Thomas ,Maurica D. Weir , Joel R. Hass , Çeviri Editörü Mustafa Bayram , 2011, Ankara
  • Calculus: A Complete Course, Robert A. Adams,C Essex 7th Edition,Addison Wesley, Longman, Toronto 2010
Opsiyonel Program BileşenleriYok

Ders Öğrenim Çıktıları

  1. Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanacaktır.
  2. Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özelliklerini öğrenecektir.
  3. Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözme yeteneği kazanacaktır.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

HaftaKonularÖn Hazırlık
1Fonksiyonlar:Fonksiyonlar ve Grafikleri, Trigonometrik Fonksiyonlar, Limit ve Süreklilik:Değişim Oranları ve Eğrilerin Teğetleri, Bir Fonksiyonun Limiti ve Limit Kuralları,Sandviç (Sıkıştırma Teoremi) Teoremi, Limitin Açık Tanımı Ders Kitabı 1 (Bölüm 1-2)
2Tek Taraflı Limitler, Süreklilik, Süreksizlik Çeşitleri, Sürekli Fonksiyonlar, Ara Değer Teoremi, Sonsuzluğu İçeren Limitler, Grafiklerin AsimptotlarıDers Kitabı 1 (Bölüm 2)
3Türev: Teğetler, Normal Doğrular, Bir Noktada Türev, Bir Fonksiyon Olarak Türev, Bir Aralık Üzerinde Türev, Tek Taraflı Türevler, Türev Kuralları, Yüksek Mertebeden Türevler, Bir Değişim Oranı Olarak TürevDers Kitabı 1 (Bölüm 3)
4Trigonometrik Fonksiyonların Türevleri, Zincir Kuralı, Kapalı Fonksiyonlarda Türev, Lineerleştirme ve DiferansiyellerDers Kitabı 1 (Bölüm 3)
5TürevinUygulamaları: Fonksiyonların Ekstremum Değerleri, Kritik Noktalar, Rolle Teoremi, Ortalama Değer Teoremi, Monoton Fonksiyonlar ve Birinci Türev Testi: Artan-Azalan Fonksiyonlar, Yerel Ekstremumlar İçin Birinci Türev Testi, Konkavlık ve Eğri Çizimi, Konkavlık İçin İkinci Türev Testi, Büküm Noktaları Ders Kitabı 1 (Bölüm 4)
6Yerel Ekstremum için İkinci Türev Testi, y=f(x) Fonksiyonunun Grafiği, Ters Türevler, Belirsiz İntegralDers Kitabı 1 (Bölüm 4-5)
7Belirli İntegral, Belirli İntegralin Özellikleri, Negatif Olmayan Bir Fonksiyonun Grafiğinin Altındaki Alan,Sürekli Bir Fonksiyonun Ortalama Değeri,Belirli İntegraller İçin Ortalama Değer Teoremi, Kalkülüsün Temel Teoremi: Temel Teorem Kısım 1, Temel Teorem Kısım 2, Toplam AlanDers Kitabı 1 (Bölüm 5)
81.Yıl içi Sınavı Belirsiz İntegraller ve Yerine Koyma Yöntemi, Değişken Dönüşümü ve Eğriler Arasındaki Alanlar, y’ye Göre İntegral Alma, Simetrik Fonksiyonların Belirli İntegralleri Ders Kitabı 1 (Bölüm 5)
9Belirli İntegralin Uygulamaları: Dik-Kesitler Kullanarak Hacim Bulmak, Disk Yöntemi, Pul Yöntemi, Silindirik Kabuk Yöntemi, Yay Uzunluğu, Dönel Yüzeylerin Alanları Ders Kitabı 1 (Bölüm 6)
10Transandant Fonksiyonlar:Ters Fonksiyonlar ve Türevleri, Doğal Logaritma, Logaritmik Fonksiyonlar ve Türevleri, Logaritmik Türev, Üstel Fonksiyonlar, Üstel Fonksiyonların Türev ve İntegralleri, Belirsizlikler ve L’Hospital Kuralı, Cauchy Ortalama Değer Teoremi Ders Kitabı 1 (Bölüm 7)
11Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve TürevleriDers Kitabı 1 (Bölüm 7)
12İntegrasyon Teknikleri:Kısmi İntegrasyon,Belirli İntegraller için Kısmi İntegrasyon Formülü, Trigonometrik İntegraller, Trigonometrik Değişken DönüşümleriDers Kitabı 1 (Bölüm 8)
132.Yıl içi Sınavı Rasyonel Fonksiyonların Kısmi Kesirlerle İntegrasyonu, Geneleştirilmiş (Imroper ) Integraller: I.Tip ve II. Tip Geneleştirilmiş (Imroper) integraller Ders Kitabı 1 (Bölüm 8)
14Sonsuz Diziler ve Seriler: Diziler, Yakınsama ve Iraksama, Dizilerin Yakınsaklığı, Diziler İçin Sandviç(Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek, İntegral Testi, p Serisi , Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma TestiDers Kitabı 1 (Bölüm 10)
15Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi) , Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık Testi, Ders Kitabı 1 (Bölüm 10)
16Final sınavı-

Değerlendirme Sistemi

EtkinliklerSayıKatkı Payı
Devam/Katılım
Laboratuar
Uygulama
Arazi Çalışması
Derse Özgü Staj
Küçük Sınavlar/Stüdyo Kritiği
Ödev
Sunum/Jüri
Projeler
Seminer/Workshop
Ara Sınavlar260
Final140
Dönem İçi Çalışmaların Başarı Notuna Katkısı
Final Sınavının Başarı Notuna Katkısı
TOPLAM100

AKTS İşyükü Tablosu

EtkinliklerSayıSüresi (Saat)Toplam İşyükü
Ders Saati146
Laboratuar
Uygulama
Arazi Çalışması
Sınıf Dışı Ders Çalışması146
Derse Özgü Staj
Ödev110
Küçük Sınavlar/Stüdyo Kritiği
Projeler
Sunum / Seminer
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi)115
Final (Sınav Süresi + Sınav Hazırlık Süresi)115
Toplam İşyükü :
Toplam İşyükü / 30(s) :
AKTS Kredisi :
Diğer NotlarYok