Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Matematik 1 | MAT1001 | 5 | 7 | 4 | 2 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Güz |
---|
Dersin Dili | İngilizce, Türkçe |
---|---|
Dersin Seviyesi | Lisans |
Dersin Türü | Zorunlu @ İstatistik Lisans Programı |
Ders Kategorisi | Temel Meslek Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Matematik Bölümü |
---|---|
Dersin Koordinatörü | |
Dersi Veren(ler) | Mustafa Düldül |
Asistan(lar)ı |
Dersin Amacı | Bu dersi tamamlayan öğrenci 1. Tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanma, 2. Fonksiyonların grafiğini, asimptot, kritik nokta, azalan/artan ve konkavlık inceleyerek çizme, 3. Maksimum minimum problemlerini kurma ve çözme, 4. Integral hesabın temel teoremini kullanarak belirli integral çözme ve uygulama, 5. Belirsiz integral yöntemlerini kullanma becerilerini kazanır . |
---|---|
Dersin İçeriği | Fonksiyonlar: Fonksiyonlar ve Grafikleri, Trigonometrik Fonksiyonlar Limit ve Süreklilik: Değişim Oranları ve Eğrilerin Teğetleri, Bir Fonksiyonun Limiti ve Limit Kuralları, Sandviç (Sıkıştırma) Teoremi, Limitin Açık Tanımı, Tek Taraflı Limitler, Süreklilik, Süreksizlik Çeşitleri, Sürekli Fonksiyonlar, Ara Değer Teoremi, Sonsuzluğu İçeren Limitler, Grafiklerin Asimptotları, Türev: Teğetler, Normal Doğrular, Bir Noktada Türev, Bir Fonksiyon Olarak Türev, Bir Aralık Üzerinde Türev, Tek Taraflı Türevler, Türev Kuralları, Yüksek Mertebeden Türevler, Bir Değişim Oranı Olarak Türev, Trigonometrik Fonksiyonların Türevleri, Zincir Kuralı, Kapalı Fonksiyonlarda Türev, Lineerleştirme ve Diferansiyeller, Türevin uygulamaları: Fonksiyonların ekstremum değerleri, Kritik noktalar, Rolle Teoremi, Ortalama Değer Teoremi, Monoton Fonksiyonlar ve Birinci Türev Testi: Artan-Azalan fonksiyonlar, Yerel Ekstremumlar için Birinci Türev Testi, Konkavlık ve Eğri çizimi, Konkavlık için İkinci Türev Testi, Büküm Noktaları, Yerel Ekstremum için İkinci Türev Testi, y=f(x) Fonksiyonunun Grafiği, Ters Türevler, Belirsiz İntegral, Integral: Alan ve Sonlu ToplamlarlaTahminde Bulunmak, Negatif Olmayan Sürekli bir Fonksiyonun Ortalama Değeri, Sigma Notasyonu ve Sonlu Toplamların Limitleri, Riemann Toplamları, Belirli İntegral, Belirli İntegralin Özellikleri, Negatif Olmayan Bir Fonksiyonun Grafiğinin Altındaki Alan,Sürekli Bir Fonksiyonun Ortalama Değeri, Belirli İntegraller için Ortalama Değer Teoremi, Kalkülüsün Temel Teoremi: Temel Teorem Kısım 1, Temel Teorem Kısım 2, Toplam Alan, Belirsiz İntegraller ve Yerine Koyma Yöntemi, Değişken Dönüşümü ve Eğriler Arasındaki Alanlar, y’ye Göre İntegral Alma, Simetrik Fonksiyonların Belirli İntegralleri, Belirli İntegralin Uygulamaları: Dik-kesitler Kullanarak Hacim Bulmak, Disk Yöntemi, Pul Yöntemi, Silindirik Kabuk Yöntemi, Yay Uzunluğu, Dönel Yüzeylerin Alanları, Transandant Fonksiyonlar:Ters Fonksiyonlar ve Türevleri, Doğal Logaritma, Logaritmik Fonksiyonlar ve Türevleri, Logaritmik Türev, Trigonometrik Fonksiyonların İntegralleri, Üstel Fonksiyonlar, Üstel Fonksiyonların Türev ve İntegralleri, Belirsizlikler ve L’Hospital Kuralı, Cauchy Ortalama Değer Teoremi, Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve Türevleri, Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve Türevleri, İntegrasyon Teknikleri: Kısmi İntegrasyon, Belirli İntegraller için Kısmi İntegrasyon Formülü, Trigonometrik İntegraller, İndirgeme Formülleri, Trigonometrik Değişken Dönüşümleri, Rasyonel Fonksiyonların Kısmi Kesirlerle İntegrasyonu, Geneleştirilmiş (Imroper ) Integraller: I.Tip ve II. Tip Geneleştirilmiş (Imroper) integraller, Sonsuz Diziler ve Seriler: Diziler, Yakınsama ve Iraksama, Dizilerin Yakınsaklığı, Diziler İçin Sandviç(Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek, İntegral Testi, p Serisi , Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran ve Kök Testleri, Oran Testi, Kök Testi, Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi) , Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık Testi |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenciler tek değişkenli fonksiyonlarda limit, süreklilik ve türev kavramlarını kullanacaktır.
- Öğrenciler fonksiyonların grafiğini, asimptotları, kritik noktaları, azalan/artan özelliklerini öğrenecektir.
- Öğrenciler maksimum minimum problemlerini kurma ve türev kullanarak çözme yeteneği kazanacaktır.
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Fonksiyonlar:Fonksiyonlar ve Grafikleri, Trigonometrik Fonksiyonlar, Limit ve Süreklilik:Değişim Oranları ve Eğrilerin Teğetleri, Bir Fonksiyonun Limiti ve Limit Kuralları,Sandviç (Sıkıştırma Teoremi) Teoremi, Limitin Açık Tanımı | Ders Kitabı 1 (Bölüm 1-2) |
2 | Tek Taraflı Limitler, Süreklilik, Süreksizlik Çeşitleri, Sürekli Fonksiyonlar, Ara Değer Teoremi, Sonsuzluğu İçeren Limitler, Grafiklerin Asimptotları | Ders Kitabı 1 (Bölüm 2) |
3 | Türev: Teğetler, Normal Doğrular, Bir Noktada Türev, Bir Fonksiyon Olarak Türev, Bir Aralık Üzerinde Türev, Tek Taraflı Türevler, Türev Kuralları, Yüksek Mertebeden Türevler, Bir Değişim Oranı Olarak Türev | Ders Kitabı 1 (Bölüm 3) |
4 | Trigonometrik Fonksiyonların Türevleri, Zincir Kuralı, Kapalı Fonksiyonlarda Türev, Lineerleştirme ve Diferansiyeller | Ders Kitabı 1 (Bölüm 3) |
5 | TürevinUygulamaları: Fonksiyonların Ekstremum Değerleri, Kritik Noktalar, Rolle Teoremi, Ortalama Değer Teoremi, Monoton Fonksiyonlar ve Birinci Türev Testi: Artan-Azalan Fonksiyonlar, Yerel Ekstremumlar İçin Birinci Türev Testi, Konkavlık ve Eğri Çizimi, Konkavlık İçin İkinci Türev Testi, Büküm Noktaları | Ders Kitabı 1 (Bölüm 4) |
6 | Yerel Ekstremum için İkinci Türev Testi, y=f(x) Fonksiyonunun Grafiği, Ters Türevler, Belirsiz İntegral | Ders Kitabı 1 (Bölüm 4-5) |
7 | Belirli İntegral, Belirli İntegralin Özellikleri, Negatif Olmayan Bir Fonksiyonun Grafiğinin Altındaki Alan,Sürekli Bir Fonksiyonun Ortalama Değeri,Belirli İntegraller İçin Ortalama Değer Teoremi, Kalkülüsün Temel Teoremi: Temel Teorem Kısım 1, Temel Teorem Kısım 2, Toplam Alan | Ders Kitabı 1 (Bölüm 5) |
8 | 1.Yıl içi Sınavı Belirsiz İntegraller ve Yerine Koyma Yöntemi, Değişken Dönüşümü ve Eğriler Arasındaki Alanlar, y’ye Göre İntegral Alma, Simetrik Fonksiyonların Belirli İntegralleri | Ders Kitabı 1 (Bölüm 5) |
9 | Belirli İntegralin Uygulamaları: Dik-Kesitler Kullanarak Hacim Bulmak, Disk Yöntemi, Pul Yöntemi, Silindirik Kabuk Yöntemi, Yay Uzunluğu, Dönel Yüzeylerin Alanları | Ders Kitabı 1 (Bölüm 6) |
10 | Transandant Fonksiyonlar:Ters Fonksiyonlar ve Türevleri, Doğal Logaritma, Logaritmik Fonksiyonlar ve Türevleri, Logaritmik Türev, Üstel Fonksiyonlar, Üstel Fonksiyonların Türev ve İntegralleri, Belirsizlikler ve L’Hospital Kuralı, Cauchy Ortalama Değer Teoremi | Ders Kitabı 1 (Bölüm 7) |
11 | Ters Trigonometrik Fonksiyonlar ve Türevleri, Hiperbolik Fonksiyonlar, Hiperbolik Fonksiyonların Türev ve İntegralleri, Ters Hiperbolik Fonksiyonlar ve Türevleri | Ders Kitabı 1 (Bölüm 7) |
12 | İntegrasyon Teknikleri:Kısmi İntegrasyon,Belirli İntegraller için Kısmi İntegrasyon Formülü, Trigonometrik İntegraller, Trigonometrik Değişken Dönüşümleri | Ders Kitabı 1 (Bölüm 8) |
13 | 2.Yıl içi Sınavı Rasyonel Fonksiyonların Kısmi Kesirlerle İntegrasyonu, Geneleştirilmiş (Imroper ) Integraller: I.Tip ve II. Tip Geneleştirilmiş (Imroper) integraller | Ders Kitabı 1 (Bölüm 8) |
14 | Sonsuz Diziler ve Seriler: Diziler, Yakınsama ve Iraksama, Dizilerin Yakınsaklığı, Diziler İçin Sandviç(Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek, İntegral Testi, p Serisi , Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma Testi | Ders Kitabı 1 (Bölüm 10) |
15 | Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi) , Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık Testi, | Ders Kitabı 1 (Bölüm 10) |
16 | Final sınavı | - |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | ||
Sunum/Jüri | ||
Projeler | ||
Seminer/Workshop | ||
Ara Sınavlar | 2 | 60 |
Final | 1 | 40 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 14 | 6 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | 14 | 6 | |
Derse Özgü Staj | |||
Ödev | 1 | 10 | |
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | |||
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 15 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 15 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|