Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Lineer Cebir 2 | MAT1152 | 4 | 5 | 4 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Bahar |
---|
Dersin Dili | İngilizce, Türkçe |
---|---|
Dersin Seviyesi | Lisans |
Dersin Türü | Zorunlu @ Matematik Lisans Programı Zorunlu @ Matematik Lisans Programı (2. Öğretim) |
Ders Kategorisi | Temel Meslek Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Matematik Bölümü |
---|---|
Dersin Koordinatörü | A. Göksel Ağargün |
Dersi Veren(ler) | Mustafa Düldül |
Asistan(lar)ı |
Dersin Amacı | 1) Matrisler ve lineer dönüşümler arasındaki ilişkileri öğretmek 2) Bir lineer dönüşümün rankının hesaplanmasını öğretmek ve bazların değişimi ile ilgili bilgi vermek, 3) Permütasyonlar ve n-lineer fonksiyonlar kavramlarını öğretmek, 4) Determinant fonksiyonu, özellikleri ve bir matrisin determinantının nasıl hesaplanacağını öğretip, uygulamalarını kavratmak, 5) Lineer denklem sistemleri ve bunlara ait çözüm yöntemlerini öğretmek, 6) Lineer dönüşümlerdeki temel konuları hatırlatarak özdeğer özvektör kavramlarını öğretmek, 7) Köşegenleştirme ve Cayley-Hamilton teoremini kavratmaktır. |
---|---|
Dersin İçeriği | Matrisler ve lineer dönüşümler\Lineer dönüşüm-matris ilişkisi\Bir lineer dönüşümün rankı, bazların değişimi\Benzerlik, iç çarpım uzaylarının lineer dönüşümleri\Permütasyonlar, n-lineer fonksiyonlar\ Determinant fonksiyonu ve özellikleri\ bir matrisin determinantının hesaplanması (Sarrus Kuralı, Laplace açılımları), \Bir matrisin adjointi (eki) ve tersi\Determinant uygulamaları (lineer bağımsızlık, matrisin rankı, vektörel çarpım, karma çarpım), bir lineer dönüşümün determinantı \Lineer denklem sistemleri ve lineer denklem sistemlerinin elementer operasyonlar yardımıyla çözümü\ Lineer denklem sistemlerinin determinant yardımıyla çözümü, Lineer denklem sistemleri ile matrislerin özdeğer ve özvektörleri,\(Cramer metodu ve Cramer olmayan lineer denklem sistemleri)\Köşegenleştirme, Cayley- Hamilton teoremi,\ |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenci matrisler ve lineer dönüşümler arasındaki ilişkileri açıklayabilir.
- Öğrenci bir lineer dönüşümün rankını hesaplayabilir ve bazların değişimi ile ilgili bilgileri uygulayabilir.
- Öğrenci permütasyon ve n-lineer fonksiyon tanımlarını yapabilir.
- Öğrenci determinant fonksiyonunu ve özelliklerini öğrenerek bir matrisin determinantını hesaplayabilir.
- Öğrenci lineer denklem sistemlerini ve bunlara ait çözüm yöntemlerini açıklayabilir.
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Matrisler ve lineer dönüşümler | Kitap 2 (Bölüm 8) |
2 | Lineer dönüşüm-matris ilişkisi | Kitap 2 (Bölüm 8) |
3 | Bir lineer dönüşümün rankı, bazların değişimi | Kitap 2 (Bölüm 8) |
4 | Benzerlik, iç çarpım uzaylarının lineer dönüşümleri | Kitap 2 (Bölüm 8) |
5 | Permütasyonlar, n-lineer fonksiyonlar | Kitap 2 (Bölüm 9) |
6 | Determinant fonksiyonu ve özellikleri | Kitap 2 (Bölüm 9) |
7 | Bir matrisin determinantının hesaplanması (Sarrus Kuralı, Laplace açılımları) | Kitap 2 (Bölüm 9) |
8 | Ara Sınav | - |
9 | Bir matrisin adjointi (eki) ve tersi | Kitap 3 (Bölüm 3) |
10 | Determinant uygulamaları (lineer bağımsızlık, matrisin rankı, vektörel çarpım, karma çarpım), bir lineer dönüşümün determinantı | Kitap 3 (Bölüm 3) |
11 | Lineer denklem sistemleri ve lineer denklem sistemlerinin elementer operasyonlar yardımıyla çözümü | Kitap 2 (Bölüm 10) |
12 | Lineer denklem sistemlerinin determinant yardımıyla çözümü (Cramer metodu ve Cramer olmayan lineer denklem sistemleri) | Kitap 2 (Bölüm 10) |
13 | Lineer denklem sistemlerinin determinant yardımıyla çözümü (Cramer metodu ve Cramer olmayan lineer denklem sistemleri) | Kitap 2 (Bölüm 10) |
14 | Lineer denklem sistemleri ile matrislerin özdeğer ve özvektörleri | Kitap 2 (Bölüm 12) |
15 | Köşegenleştirme, Cayley- Hamilton teoremi | Kitap 3 (Bölüm 7) |
16 | Final sınavı |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | ||
Sunum/Jüri | ||
Projeler | ||
Seminer/Workshop | ||
Ara Sınavlar | 2 | 40 |
Final | 1 | 60 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 14 | 4 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | 14 | 3 | |
Derse Özgü Staj | |||
Ödev | |||
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | |||
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 15 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 25 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|