Ders AdıKodu Yerel KrediAKTS Ders (saat/hafta)Uygulama (saat/hafta)Laboratuar (saat/hafta)
Topolojik Vektör UzaylarıMAT514837.5300
ÖnkoşullarYok
YarıyılGüz, Bahar
Dersin Diliİngilizce, Türkçe
Dersin SeviyesiYüksek Lisans
Dersin TürüSeçmeli @ Matematik ABD Matematik Yüksek Lisans Programı
Seçmeli @ Matematik ABD Matematik Yüksek Lisans Programı (İngilizce)
Ders KategorisiUzmanlık/Alan Dersleri
Dersin Veriliş ŞekliYüz yüze
Dersi Sunan Akademik BirimMatematik Bölümü
Dersin Koordinatörü
Dersi Veren(ler)Mustafa Düldül
Asistan(lar)ı
Dersin AmacıSonlu ve sonsuz aralıklarda verilen ikinci mertebeden diferansiyel operatörlerin spektral özelliklerini incelemek
Dersin İçeriğiTopolojik vektör uzayları (temel tanımlar), yerel konveks uzaylar, normlar ve seminormlar, topolojik vektor uzaylara örnekler, lineer sürekli tasvirler, sınırlı kümeler, altuzay ve bölüm uzayı, kartezyen çarpım ve direk toplam, ağların yakınsaklığı, tam uzaylar, sonlu boyutlu uzaylar ve metrik uzaylar, açık tasvir teoremi, kapalı grafik teoremi ve Banach-Steinhaus teoremi, Hanh-Banach teoremi, konveks kümelerin ayrılması, zayıf topolojiler, kutupsal kümeler, Alaoğlu Teoremi, A-Yakınsaklık topolojisi, Mackey-Arens teoremi, Mackey uzayı, Barelled , Infrabarelled ve Bornolojik uzaylar, Refleksiv ve Semi-refleksiv uzaylar, Projektiv ve İndüktiv topolojiler
Ders Kitabı / Malzemesi / Önerilen Kaynaklar
  • Ders Notları / J. Horvath, Topological Vector Space and Distributions, Addison-Wesley, 1966 G. Köthe, Topological Vector Spaces, I, II, Springer- Verlag, 1969, 1979. H.H. Schaefer, Topological Vector Spaces, Springer- Verlag, 1971. H. Jarchow, Locally Convex Spaces, B.G. Teubner, 1981.
Opsiyonel Program BileşenleriYok

Ders Öğrenim Çıktıları

  1. Topolojik vektör uzayları ve yerel konveks topolojik vektöruzaylarından başlıca kavramları bilecek ve onların temel özelliklerini açıklayabilecektir,
  2. Lineer operatör teorisindeki temel fikirleri topolojik vektör uzaylarıçerçevesinde bilecektir,
  3. Yerel konveks uzaylarda konveks kümelerin özelliklerini kavrayabilecektir
  4. Yerel konveks uzayların bir çok sınıfını bilecektir,
  5. Projektif ve indüktif topolojileri kavrayabilecektir,
  6. Matematiksel varsayımları ispatlayarak ve Fonksiyonel analizden teoremler ortaya koyarak eleştirel düşünme becerisini gösterebilecektir
  7. Yapıcı şüphecilikle matematiksel fikirleri eleştirme becerisini geliştirecektir
  8. Matematikte metodolojinin ve ispatların formulasyonunda tanımlar tarafından oynanan temel rolü kavrayabilecektir

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

HaftaKonularÖn Hazırlık
1Topolojik vektör uzayları (temel tanımlar) Ders Kitabı 1 (Bölüm 2.1-3)
2Yerel konveks uzaylar, normlar ve semi-normlar Ders Kitabı 1 (Bölüm 2.4-3)
3Topolojik vektor uzaylara örnekler, Lineer sürekli tasvirler Ders Kitabı 1 (Bölüm 2.5)
4Sınırlı Kümeler, altuzay ve bölüm uzayı Ders Kitabı 1 (Bölüm 2.6)
5Kartezyen çarpım ve direk toplam, ağların yakınsaklığı Ders Kitabı 1 (Bölüm 2.7)
6Tam uzaylar, sonlu boyutlu uzaylar ve metrik uzaylar Ders Kitabı 1 (Bölüm 2.8-10)
7Açık Tasvir Teoremi, Kapalı Grafik Teoremi ve Banach-Steinhaus TeoremiDers Kitabı 1 (Bölüm 1.8-9)
8Arasınav-
9Hanh-Banach Teoremi, konveks kümelerin ayrılması Ders Kitabı 1 (Bölüm 3.1)
10Zayıf topolojiler, kutupsal kümeler, Alaoğlu Teoremi Ders Kitabı 1 (Bölüm 3.2-4)
11A-Yakınsaklık Topolojisi, Mackey-Arens Teoremi, Mackey uzayı Ders Kitabı 1 (Bölüm 3.5)
12Barelled , Infrabarelled ve Bornolojik uzaylar Ders Kitabı 1 (Bölüm 3.6-7)
13Barelled , Infrabarelled ve Bornolojik uzaylar Ders Kitabı 1 (Bölüm 3.6-7)
14Refleksiv ve Semi-refleksiv uzaylar Ders Kitabı 1 (Bölüm 3.8-9)
15Projektiv ve İndüktiv topolojiler Ders Kitabı 1 (Bölüm 2.11-13)
16Final sınavı-

Değerlendirme Sistemi

EtkinliklerSayıKatkı Payı
Devam/Katılım
Laboratuar
Uygulama
Arazi Çalışması
Derse Özgü Staj
Küçük Sınavlar/Stüdyo Kritiği
Ödev
Sunum/Jüri
Projeler
Seminer/Workshop
Ara Sınavlar260
Final140
Dönem İçi Çalışmaların Başarı Notuna Katkısı
Final Sınavının Başarı Notuna Katkısı
TOPLAM100

AKTS İşyükü Tablosu

EtkinliklerSayıSüresi (Saat)Toplam İşyükü
Ders Saati143
Laboratuar
Uygulama
Arazi Çalışması
Sınıf Dışı Ders Çalışması244
Derse Özgü Staj
Ödev99
Küçük Sınavlar/Stüdyo Kritiği
Projeler
Sunum / Seminer
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi)13
Final (Sınav Süresi + Sınav Hazırlık Süresi)13
Toplam İşyükü :
Toplam İşyükü / 30(s) :
AKTS Kredisi :
Diğer NotlarYok