Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
İntegral Dönüşümler | MTM3551 | 3 | 6 | 3 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Güz |
---|
Dersin Dili | İngilizce, Türkçe |
---|---|
Dersin Seviyesi | Lisans |
Dersin Türü | Seçmeli @ Matematik Mühendisliği Lisans Programı |
Ders Kategorisi | Temel Meslek Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Matematik Mühendisliği Bölümü |
---|---|
Dersin Koordinatörü | Kevser Köklü |
Dersi Veren(ler) | Fatih Taşçı |
Asistan(lar)ı |
Dersin Amacı | Mühendislik problemlerinin çözümlerinde yaygın bir şekilde kullanılan integral dönüşümlerininin verilmesi. |
---|---|
Dersin İçeriği | Fourier İntegrali (Tanım, Trigonometrik şekli, Varlık Teoremi), Fourier Dönüşümü (Tanım, özellikler, Kosinüs, Sinüs Dönüşümleri, ters Dönüşüm),Genelleşmiş fonksiyonların Dönüşümleri (Test fonksiyonu, İmpuls fonksiyonu), Bazı tekil ve peryodik fonksiyonların Fourier dönüşümü, Laplace Dönüşümü (Tanım, özellikler, Türev ve integralin Dönüşümü, Ters Dönüşüm) Hankel Dönüşümü ve uygulamaları, Mellin dönüşümü ve uygulamaları, Laplace dönüşümleri ile diferansiyel denklem ve sistemlerinin çözüm yöntemleri, Fourier dönüşümleri ile diferansiyel denklem ve sistemlerinin çözüm yöntemleri. |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenciler mühendislik problemlerinin çözümlerini analitik olarak çözebilme yeteneğini kazanacaklardır.
- Öğrenciler grup çalışmalarında etkin rol alacaklardır.
- Mühendislik bilimleri için alt yapı oluşturacaklardır.
- İntegral dönüşümlerini kavrayacaklardır.
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Fourier İntegrali (Tanım, Trigonometrik şekli, Varlık Teoremi) | Kaynaklardaki ilgili bölüm |
2 | Fourier Dönüşümü (Tanım, özellikler) | Kaynaklardaki ilgili bölüm |
3 | Kosinüs, Sinüs Dönüşümleri | Kaynaklardaki ilgili bölüm |
4 | Ters fourier Dönüşümü | Kaynaklardaki ilgili bölüm |
5 | Genelleşmiş fonksiyonların Dönüşümleri | Kaynaklardaki ilgili bölüm |
6 | Test fonksiyonu, İmpuls fonksiyonu | Kaynaklardaki ilgili bölüm |
7 | Laplace Dönüşümü (Tanım, özellikler) | Kaynaklardaki ilgili bölüm |
8 | Türev ve integralin Dönüşümü | Kaynaklardaki ilgili bölüm |
9 | Vize | |
10 | Ters Laplace Dönüşümü | Kaynaklardaki ilgili bölüm |
11 | Hankel Dönüşümü ve uygulamaları | Kaynaklardaki ilgili bölüm |
12 | Mellin dönüşümü | Kaynaklardaki ilgili bölüm |
13 | Mellin dönüşümünün uygulamaları | Kaynaklardaki ilgili bölüm |
14 | Laplace dönüşümleri ile diferansiyel denklem ve sistemlerinin çözüm yöntemleri | Kaynaklardaki ilgili bölüm |
15 | Fourier dönüşümleri ile diferansiyel denklem ve sistemlerinin çözüm yöntemleri | Kaynaklardaki ilgili bölüm |
16 | Final Sınavı |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | ||
Sunum/Jüri | ||
Projeler | ||
Seminer/Workshop | ||
Ara Sınavlar | 1 | 60 |
Final | 1 | 40 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 14 | 3 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | 0 | 0 | |
Sınıf Dışı Ders Çalışması | 14 | 9 | |
Derse Özgü Staj | |||
Ödev | |||
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | |||
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 2 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 2 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|