Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Makine Öğrenmesine Giriş | BLM5216 | 3 | 7.5 | 3 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Güz, Bahar |
---|
Dersin Dili | İngilizce, Türkçe |
---|---|
Dersin Seviyesi | Yüksek Lisans |
Dersin Türü | Seçmeli @ Bilgisayar Mühendisliği ABD Bilgi Teknolojileri Yüksek Lisans Programı (Tezsiz, 2. Öğretim) Seçmeli @ Bilgisayar Mühendisliği ABD Bilgi Teknolojileri Yüksek Lisans Programı (Tezsiz, 2. Öğretim, İngilizce) |
Ders Kategorisi | Uzmanlık/Alan Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Bilgisayar Mühendisliği Bölümü |
---|---|
Dersin Koordinatörü | M. Elif Karslıgil |
Dersi Veren(ler) | Banu Diri |
Asistan(lar)ı |
Dersin Amacı | Dersin amacı Makine Öğrenmesi konuları hakkında temel bilgilerin verilmesi ve uygulama örnekleri ile birlikte öğretilmesidir. |
---|---|
Dersin İçeriği | 1. Introduction to Machine Learning 2. Supervised Learning and Applications 3. Unsupervised Learning and Applications 4. Reinforcement Learning and Applications |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenci makine öğrenmesi temellerini anlar.
- Öğrenci çok bilinen eğitmenli, eğitmensiz, yarı-eğitmenli öğrenme algortimalarını öğrenir.
- Öğrenci makine öğrenmesi tekniklerini gerçek dünya problemlerine uygulayabilir.
- Öğrenci makine öğrenmesi ile ilgili bir konuda proje hazırlar, raporunu yazar ve sınıfta sunumunu yapar.
- Parametreleri verilen bir problem için öğrenci farklı makine öğrenmesi yöntemlerinin avantaj ve dezavantajlarını ortaya koyabilir.
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Makine Öğrenmesine Giriş | |
2 | Eğitmenli Öğrenme | |
3 | Bayes Kuralı | |
4 | Naive Bayes Teoremi | |
5 | Karar Ağaçları | |
6 | Lineer Ayırt Edici | |
7 | Yapay Nöron Ağları | |
8 | Yıliçi Sınavı | |
9 | Destek Vektör Makineleri | |
10 | Doğrusal olmayan DVM | |
11 | Eğitmensiz Öğrenme | |
12 | Öbekleme : K-means, Karışım modelleri | |
13 | Hiyerarşik Öbekleme Yöntemleri | |
14 | Birleşik Yöntemler: Boosting, Bagging | |
15 | Ödül-Ceza İle Öğrenme | |
16 | Proje Sunumları |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | 3 | 30 |
Sunum/Jüri | 1 | 10 |
Projeler | 1 | 20 |
Seminer/Workshop | ||
Ara Sınavlar | 1 | 10 |
Final | 1 | 30 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 16 | 3 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | 16 | 4 | |
Derse Özgü Staj | |||
Ödev | 3 | 10 | |
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | 1 | 40 | |
Sunum / Seminer | 1 | 20 | |
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 10 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 20 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|