Ders Adı | Kodu | Yerel Kredi | AKTS | Ders (saat/hafta) | Uygulama (saat/hafta) | Laboratuar (saat/hafta) |
---|---|---|---|---|---|---|
Diferansiyel Denklemler | MAT2411 | 4 | 5 | 4 | 0 | 0 |
Önkoşullar | Yok |
---|
Yarıyıl | Güz |
---|
Dersin Dili | İngilizce, Türkçe |
---|---|
Dersin Seviyesi | Lisans |
Dersin Türü | Zorunlu @ Gemi Makineleri İşletme Mühendisliği Lisans Programı (%30 İngilizce) Zorunlu @ Biyomühendislik Lisans Programı Zorunlu @ Biyomühendislik Lisans Programı (İngilizce) Zorunlu @ Mekatronik Mühendisliği Lisans Programı Zorunlu @ Metalürji ve Malzeme Mühendisliği Lisans Programı Zorunlu @ Gemi İnşaatı ve Gemi Makineleri Mühendisliği Lisans Programı (%30 İngilizce) Zorunlu @ Çevre Mühendisliği Lisans Programı Zorunlu @ İnşaat Mühendisliği Lisans Programı Zorunlu @ Harita Mühendisliği Lisans Programı Zorunlu @ Endüstri Mühendisliği Lisans Programı Zorunlu @ Elektrik Mühendisliği Lisans Programı Zorunlu @ Kimya Mühendisliği Lisans Programı Zorunlu @ Gıda Mühendisliği Lisans Programı Zorunlu @ Makine Mühendisliği Lisans Programı Zorunlu @ Kimya Mühendisliği Lisans Programı (İngilizce) Zorunlu @ İnşaat Mühendisliği Lisans Programı (İngilizce) |
Ders Kategorisi | Temel Meslek Dersleri |
Dersin Veriliş Şekli | Yüz yüze |
Dersi Sunan Akademik Birim | Matematik Bölümü |
---|---|
Dersin Koordinatörü | |
Dersi Veren(ler) | Mustafa Düldül |
Asistan(lar)ı |
Dersin Amacı | Matematiksel düşünceyi geliştirmek. Matematik, Fizik ve mühendislikte karşılaşılan problemleri çözebilmek. |
---|---|
Dersin İçeriği | Diferansiyel Denklemlerin ,Tanımı ve Sınıflandırılması, Diferansiyel Denklemin Mertebesi ve Derecesi, Diferansiyel Denklemlerin Çözümleri: İntegral Eğrisi, Kapalı-Açık Çözüm, Özel Çözüm,Genel Çözüm,Tekil Çözüm, Başlangıç Değer Problemi. Diferansiyel Denklemlerin Elde Edilişi. Birinci Mertebe Diferansiyel Denklemler: Değişkenlerine Ayrılabilir Diferansiyel Denklemler, Değişkenlerine Ayrılabilen Diferansiyel Denklemlere Dönüştürülebilen Diferansiyel Denklemler. Homojen Fonksiyonlar, Homojen Diferansiyel Denklemler, Homojen hale Dönüştürülebilen Diferansiyel Denklemler, Lineer Denklemler, İntegrasyon Çarpanları Metodu, Parametrelerin Değişimi Metodu, Bernoulli Diferansiyel Denklemleri, Tam Diferansiyel Denklemler ve İntegrasyon Çarpanları, Tek Değişkeni İçeren İntegrasyon Çarpanları Metodu, Riccati Diferansiyel Denklemleri, Birinci Mertebe Yüksek Dereceden Diferansiyel Denklemlerden Clairaut ve Lagrange Denklemleri. İkinci Mertebe Lineer Diferansiyel Denklemler: Sabit Katsayılı Homojen Diferansiyel Denklemler, Karakteristik Denklem, Lineer Homojen Denklemlerin Genel Çözümleri, Lineer Bağımsızlık ve Wronskian Determinantı. Karakteristik Denklemin Kompleks Kökleri, Reel Değerli Çözümleri, Tekrarlanan Kökler, Mertebe Düşürme, Homojen Olmayan Denklemler. Belirsiz Katsayılar Metodu, Parametrelerin Değişimi(Sabitin Değişimi-Lagrange) Metodu. Yüksek Mertebe Lineer Diferansiyel Denklemler :N inci Mertebe Lineer Diferansiyel Denklemlerin Genel Teorisi, Homojen Denklem(İkinci Tarafsız Denkem) ve Çözümü, Homojen Olmayan Denklem(İkinci Taraflı Denklem), Özel Çözümler, Genel Çözümler, Lineer Bağımsızlık ve Wronksian Determinantı, Sabit Katsayılı Homojen Denklemler, Karakteristik Polinom, Karakteristik Denklem, Reel ve Farklı Kökler, Kompleks Kökler, Tekrarlanan Kökler, Belirsiz Katsayılar Metodu, Parametrelerin(Sabitin) Değişimi Metodu. Bazı Özel İkinci Mertebe Diferansiyel Denklemler: Bağımlı Değişkeni İçermeyen Diferansiyel Denklemler, Bağımsız Değişkeni İçermeyen Diferansiyel Denklemler. Değişken Katsayılı Euler Diferansiyel Denklemi. İkinci Mertebe Lineer Diferansiyel Denlemlerin Serilerle Çözümleri: Kuvvet Serilerinin Kısa Tekrarı , Bir Adi Nokta Civarında Serilerle Çözüm. Laplace Dönüşümü, Laplace Dönüşümünün Tanımı, Ters Laplace Dönüşümü, Ters Laplace Dönüşümünün Tanımı, Başlangıç Değer Problemlerinin Laplace Dönüşümü Yardımıyla Çözümü. Birinci mertebeden lineer diferansiyel denklem sistemleri: Yok etme ve Determinant metodu. |
Ders Kitabı / Malzemesi / Önerilen Kaynaklar |
|
Opsiyonel Program Bileşenleri | Yok |
Ders Öğrenim Çıktıları
- Öğrenciler matematiksel düşünceyi geliştirmeyi öğrenecektir.
- Öğrenciler diferansiyel denklemlerini çözebilme becerisi sağlamayı öğrenecektir.
- Öğrenciler matematik, Fizik ve mühendislikte karşılaşılan problemleri çözebilmeyi öğrenecektir
- Öğrenciler bilimsel araştırmalarda kullanılmak üzere bir yöntem kazandırmayı öğrenecektir
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Diferansiyel Denklemlerin ,Tanımı ve Sınıflandırılması, Diferansiyel Denklemin Mertebesi ve Derecesi,Diferansiyel Denklemlerin Çözümleri: İntegral Eğrisi, Kapalı-Açık Çözüm, Özel Çözüm,Genel Çözüm,Tekil Çözüm, Başlangıç Değer Problemi. Diferansiyel Denklemlerin Elde Edilişi | Ders Kitabı 1(Bölüm 1 ) |
2 | Birinci Mertebe Diferansiyel Denklemler: Değişkenlerine Ayrılabilir Diferansiyel Denklemler, Değişkenlerine Ayrılabilen Diferansiyel Denklemlere Dönüştürülebilen Diferansiyel Denklemler, Homojen Fonksiyonlar, Homojen Diferansiyel Denklemler, Homojen Hale Dönüştürülebilen Diferansiyel Denklemler. | Ders Kitabı 1(Bölüm 2) |
3 | Lineer Denklemler, İntegrasyon Çarpanları Metodu, Parametrelerin Değişimi Metodu. | Ders Kitabı 1(Bölüm 2) |
4 | Bernoulli Diferansiyel Denklemi, Tam Diferansiyel Denklemler, Tek Değişkeni İçeren İntegrasyon Çarpanları Metodu. | Ders Kitabı 1(Bölüm 2) |
5 | Riccati Diferansiyel Denklemi. Birinci Mertebe Yüksek Dereceden Diferansiyel Denklemler: Clairaut ve Lagrange Denklemleri. | Ders Kitabı 1(Bölüm 2) |
6 | İkinci Mertebe Lineer Diferansiyel Denklemler: Sabit Katsayılı Homojen Diferansiyel Denklemler, Karakteristik Denklem, Lineer Homojen Denklemlerin Genel Çözümleri, Lineer Bağımsızlık ve Wronskian Determinantı. | Ders Kitabı 1(Bölüm 3) |
7 | Karakteristik Denklemin Kompleks Kökleri, Reel Kökler, Tekrarlanan Kökler, Mertebe Düşürme, Homojen Olmayan Denklemler. | Ders Kitabı 1(Bölüm 3) |
8 | 1. Yıliçi Sınavı, Belirsiz Katsayılar Metodu, Parametrelerin Değişimi (Sabitin Değişimi- Lagrange) Metodu. | - |
9 | Yüksek Mertebe Lineer Diferansiyel Denklemler : N inci Mertebe Lineer Diferansiyel Denklemlerin Genel Teorisi , Homojen Denklem(İkinci Tarafsız Denkem) ve Çözümü , Homojen Olmayan Denklem(İkinci Taraflı Denklem) ,Özel Çözümler,Genel Çözümler, Lineer Bağımsızlık ve Wronksian Determinantı, Sabit Katsayılı Homojen Denklemler , Karakteristik Polinom, Karakteristik Denklem, Reel ve Farklı Kökler , Kompleks Kökler , Tekrarlanan Kökler, | Ders Kitabı 1(Bölüm 4) |
10 | Belirsiz Katsayılar Metodu, Parametrelerin(Sabitin) Değişimi Metodu, Bazı Özel İkinci Mertebe Diferansiyel Denklemleri: Bağımlı Değişkeni İçermeyen Diferansiyel Denklemler, Bağımsız Değişkeni İçermeyen Diferansiyel Denklemler. Değişken Katsayılı Euler Diferansiyel Denklemi. | Ders Kitabı 1(Bölüm 4) , Ders Kitabı 2 (Bölüm 4) |
11 | İkinci Mertebe Lineer Diferansiyel Denlemlerin Serilerle Çözümleri: Kuvvet Serilerinin Kısa Tekrarı, Bir Adi Nokta Civarında Serilerle Çözüm. | Ders Kitabı 1(Bölüm 5) |
12 | Laplace transformasyonu, Laplace Transformasyonu’nun Tanımı , | Ders Kitabı 1(Bölüm 6) |
13 | 2. Yıliçi Sınavı, Ters (İnvers) Laplace Dönüşümü, Ters Laplace Dönüşümünün Tanımı, | Ders Kitabı 1(Bölüm 6) |
14 | Başlangıç Değer Problemlerinin Laplace Dönüşümü (Transformasyon) Yardımıyla Çözümü. | Ders Kitabı 1(Bölüm 6) |
15 | Birinci Mertebeden Lineer Diferansiyel Denklem Sistemleri: Yok etme ve Determinant metodu. | Ders Kitabı 1(Bölüm 7) |
16 | Final sınavı | - |
Değerlendirme Sistemi
Etkinlikler | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | ||
Laboratuar | ||
Uygulama | ||
Arazi Çalışması | ||
Derse Özgü Staj | ||
Küçük Sınavlar/Stüdyo Kritiği | ||
Ödev | ||
Sunum/Jüri | ||
Projeler | ||
Seminer/Workshop | ||
Ara Sınavlar | 2 | 60 |
Final | 1 | 40 |
Dönem İçi Çalışmaların Başarı Notuna Katkısı | ||
Final Sınavının Başarı Notuna Katkısı | ||
TOPLAM | 100 |
AKTS İşyükü Tablosu
Etkinlikler | Sayı | Süresi (Saat) | Toplam İşyükü |
---|---|---|---|
Ders Saati | 14 | 4 | |
Laboratuar | |||
Uygulama | |||
Arazi Çalışması | |||
Sınıf Dışı Ders Çalışması | 15 | 4 | |
Derse Özgü Staj | |||
Ödev | |||
Küçük Sınavlar/Stüdyo Kritiği | |||
Projeler | |||
Sunum / Seminer | |||
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi) | 2 | 10 | |
Final (Sınav Süresi + Sınav Hazırlık Süresi) | 1 | 10 | |
Toplam İşyükü : | |||
Toplam İşyükü / 30(s) : | |||
AKTS Kredisi : |
Diğer Notlar | Yok |
---|