Ders AdıKodu Yerel KrediAKTS Ders (saat/hafta)Uygulama (saat/hafta)Laboratuar (saat/hafta)
Matematik 2MAT107246320
ÖnkoşullarYok
YarıyılBahar
Dersin Diliİngilizce, Türkçe
Dersin SeviyesiLisans
Dersin TürüZorunlu @ Elektronik & Haberleşme Mühendisliği Lisans Programı
Zorunlu @ Biyomühendislik Lisans Programı
Zorunlu @ Mekatronik Mühendisliği Lisans Programı
Zorunlu @ Gemi Makineleri İşletme Mühendisliği Lisans Programı (%30 İngilizce)
Zorunlu @ Kimya Mühendisliği Lisans Programı
Zorunlu @ Gemi İnşaatı ve Gemi Makineleri Mühendisliği Lisans Programı (%30 İngilizce)
Zorunlu @ Çevre Mühendisliği Lisans Programı
Zorunlu @ Kimya Lisans Programı
Zorunlu @ Harita Mühendisliği Lisans Programı
Zorunlu @ Endüstri Mühendisliği Lisans Programı
Zorunlu @ Elektrik Mühendisliği Lisans Programı
Zorunlu @ İnşaat Mühendisliği Lisans Programı
Zorunlu @ Makine Mühendisliği Lisans Programı
Zorunlu @ Metalürji ve Malzeme Mühendisliği Lisans Programı
Zorunlu @ Kimya Mühendisliği Lisans Programı (İngilizce)
Zorunlu @ Fizik Lisans Programı
Zorunlu @ Biyomühendislik Lisans Programı (İngilizce)
Zorunlu @ Gıda Mühendisliği Lisans Programı
Zorunlu @ Bilgisayar Mühendisliği Lisans Programı
Zorunlu @ Kontrol ve Otomasyon Mühendisliği Lisans Programı
Zorunlu @ İnşaat Mühendisliği Lisans Programı (İngilizce)
Ders KategorisiTemel Meslek Dersleri
Dersin Veriliş ŞekliYüz yüze
Dersi Sunan Akademik BirimMatematik Bölümü
Dersin Koordinatörü
Dersi Veren(ler)Mustafa Düldül
Asistan(lar)ı
Dersin Amacı1. Dizi ve seri konusunda öğrenciyi detaylı olarak bilgilendirmek 2. Vektörlerin temel tanımlarını vermek 3. Çok değişkenli fonksiyonlarda limit, süreklilik, kısmi türev ve iki katlı integral kavramlarını kullanma becerisi sağlamak.
Dersin İçeriğiSonsuz Diziler ve Seriler: Diziler, Yakınsama ve Iraksama , Alterne Harmonik Seri, Dizilerin Yakınsaklığı, Diziler İçin Sandviç(Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sikça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek İntegral Testi, p Serisi, Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran ve Kök Testleri, Oran Testi, Kök Testi, Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi), Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık Testi, Kuvvet Serileri, Kuvvet Serileri ve Yakınsaklık, Bir Kuvvet Serisinin Yakınsaklık Yarıçapı, Kuvvet Serilerinde İşlemler, Kuvvet Serileri için Seri Çarpım Teoremi, Terim Terime Türev Teoremi, Terim Terime İntegrasyon Teoremi, Taylor and Maclaurin Serileri, n’inci Mertebeden Taylor Polinomu, Taylor Serisinin Yakınsaklığı, Taylor Teoremi, Taylor Formülü, Taylor Serisinin Uygulamaları, Taylor Serisini Kullanmak, Elementer Olmayan İntegrallerin Hesaplanması, Arktanjantlar, Belirsizlik Durumundaki Limitleri Hesaplamak, Parametrik Denklemler ve Kutupsal Koordinatlar: Düzlem Eğrilerin Parametrize Edilmesi, Parametrik Denklemler, Parametrik Eğrilerle Hesaplama, Teğetler ve Alanlar, Parametrik Olarak Tanımlı Eğrinin Uzunluğu, Kutupsal Koordinatlar: Kutupsal Denklemler ve Grafikler, Kutupsal ve Kartezyen Koordinatlar Arasındaki İlişki, Kutupsal Koordinatlarla Grafik Çizimi, Simetri, Kutupsal Grafikler için Simetri Testleri, Kutupsal Koordinatlarda Alanlar ve Uzunluklar, Düzlemde Alan, Kutupsal Eğrinin Uzunluğu, Doğruların Standart Kutupsal Denklemi, Çemberler Vektörler ve Uzay Geometrisi: Üç Boyutlu Koordinat Sistemleri, Uzayda Uzaklık ve Küreler, Vektörler, Nokta Çarpım, İki Vektör Arasındaki Açı, Dik (Ortogonal) Vektörler, Nokta Çarpımın Özellikleri ve Vektör İzdüşümleri Vektörel Çarpım, Uzayda İki Vektörün Vektörel Çarpımı, Paralel Vektörler, Vektörel Çarpımın Özellikleri, Paralelkenarın Alanı, Üçlü Skaler(karma) Çarpım Uzayda Doğrular ve Düzlemler: Uzayda Doğrular ve Doğru Parçaları, Bir Doğrunun Vektör Denklemi, Bir Doğrunun Parametrik Denklemleri Uzaydaki Bir Düzlem İçin Denklem, Kesişim Doğruları, Silindirler ve İkinci Dereceden Yüzeyler: Silindirler, İkinci Dereceden Yüzeyler, Elipsoidler, Paraboloidler, Eliptik Paraboloidler, Eliptik Koniler, Küreler Vektör Değerli Fonksiyonlar ve Uzayda Hareket: Uzayda Eğriler ve Teğetleri, Limit ve Süreklilik, Türevler, Yer Vektörü, Hız Vektörü, İvme Vektörü, Türev Alma Kuralları, Bir Uzay Eğrisi Boyunca Yay Uzunluğu, Birim Teğet Vektör, Kısmi Türevler: Çok Değişkenli Fonksiyonlar: Tanım ve Değer Kümeleri, İki Değişkenli Fonksiyonlar, İki Değişkenli Fonksiyonların Grafikleri ve Seviye Eğrileri, Üç Değişkenli Fonksiyonlar, Yüksek Boyutlarda Limitler ve Süreklilik, İki Değişkenli Fonksiyonlarda Limit, Süreklilik, Limitin Yokluğu İçin Çift Yol Testi, Bileşkelerin (Bileşik Fonksiyonların) Sürekliliği, İkiden Fazla Değişkenli Fonksiyonlar, Kısmi Türevler: İki Değişkenli Fonksiyonların Kısmi Türevleri, İkiden Fazla Değişkenli Fonksiyonlar, Kısmi Türevler ve Süreklilik, İkinci Mertebeden Kısmi Türevler, Karışık Türev ve Teoremi, Daha Yüksek Mertebeden Kısmi Türevler, Diferansiyellenebilme, İki Değişkenli Fonksiyonlar için Artırım Teoremi, Zincir Kuralı: İki Değişkenli Fonksiyonlar, İki Bağımsız Değişken İçeren Fonksiyonlar İçin Zincir Kuralı, Üç Değişkenli Fonksiyonlar, Üç Bağımsız Değişkenli Fonksiyonlar için Zincir Kuralı, Yüzeylerde Tanımlanmış Fonksiyonlar, İki Bağımsız Değişken ve Üç Ara Değişken İçin Zincir Kuralı, Kapalı Türeve Yeniden Bakış, Kapalı Türev İçin Bir Formül, Çok Değişkenli Fonksiyonlar, Yönlü Türevler ve Gradyent Vektörler: Düzlemde Yönlü Türevler, Yönlü Türevin Yorumu, Hesaplama ve Gradyentler, Seviye Eğrilerinin Teğetleri ve Gradyentler, Üç Değişkenli Fonksiyonlar, Bir Yüzeyin Teğet Düzlemi, Bir Yüzeyin Normal Doğrusu, İki Değişkenli Bir Fonksiyonu Lineerleştirmek, Diferansiyeller, Fonksiyonun Toplam Diferansiyeli, Ekstrem Değerler ve Eyer Noktaları: Yerel Ekstremum Değerler İçin Türev Testleri, Yerel Ekstremum Değerleri İçin Birinci Türev Testi, Büküm Noktası, Yerel Ekstremum Değerler İçin İkinci Türev Testi, İki Değişkenli Fonksiyonlar İçin (a,b) Noktasında Taylor Formülü, İki Değişkenli Fonksiyonlar için (0,0) noktasında Taylor Formülü, Kısıtlanmış Değişkenlerle Kısmi Türevler, Hangi Değişkenin Bağımlı, Hangilerinin Bağımsız Olduğuna Karar Vermek, w=f(x,y,z)’ deki Değişkenler Başka Bir Denklem Tarafından Kısıtlandığında w’nun x’e Göre Kısmi Türevi Nasıl Bulunur? İki Katlı İntegraller: Dikdörtgenler Üzerinde İki Katlı ve Ardışık İntegraller, İki Katlı İntegraller, Hacim olarak İki Katlı İntegraller, İki Katlı İntegrallerin Hesaplanmasında Fubini Teoremi, Fubini Teoremi(Birinci Şekli), Genel Bölgeler Üzerinde İki Katlı İntegraller, Dikdörtgen olmayan Sınırlı Bölgeler Üzerinde İki Katlı İntegraller, Hacimler, Fubini Teoremi (Daha Kapsamlı Şekil), İntegrasyonun sınırlarını Bulmak, Dik Kesitleri Kullanmak, Yatay Kesitleri Kullanmak, İki Katlı İntegrallerin Özellikleri, İki Katlı İntegrallerde Alan Hesabı, Ortalama Değer, Kutupsal Formda İki Katlı İntegraller: Kutupsal Koordinatlarda Integraller, İntegrasyon sınırlarını Bulmak, Kutupsal Koordinatlarda Alan, Kartezyen İntegralleri Kutupsal İntagrallere Dönüştürmek, İki Katlı İntegrallerde Değişken Dönüşümü
Ders Kitabı / Malzemesi / Önerilen Kaynaklar
  • 1. Thomas’ Calculus, 12th Edition, G.B Thomas, M.D.Weir, J.Hass and F.R.Giordano, Addison-Wesley, 2012. 2. Thomas Kalkülüs (cilt 1-2) ,George B. Thomas ,Maurica D. Weir Joel R. Hass , Çeviri Editörü Mustafa Bayram , 2011, Ankara . 3. Calculus: A Complete Course, Robert A. Adams,C Essex 7th Edition,Addison Wesley Longman Toronto 2010.
  • 2. Salih Çelik ve Sultan Çelik, Matematik Analiz 2, 2. baskı, Birsen Yayınevi, 2011
Opsiyonel Program BileşenleriYok

Ders Öğrenim Çıktıları

  1. Öğrenciler dizilerin ve serilerin yakınsaklığını ve kuvvet serilerinin yakınsaklık aralığını bulacaktır.
  2. Öğrenciler üç boyutlu uzayda ve düzlemde vektör cebrini kullanma ve düzlem ,doğru denklemlerini yazma becerisi kazanacaktır.
  3. Öğrenciler çok değişkenli fonksiyonlarda limit ve süreklilik kavramlarını anlama, kısmi türev hesaplama, teğet düzlem, yönlü türev ve gradyen bulma; ekstremum problemlerini ikinci türev testi ile çözme becerisi kazanacaktır.
  4. Öğrenciler İki katlı integralleri çözme, alan ve hacim hesabında iki katlı integralleri kullanacaktır.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

HaftaKonularÖn Hazırlık
1Sonsuz Diziler ve Seriler: Diziler,Yakınsama ve Iraksama, Dizilerin Yakınsaklık ve Iraksaklığı, Dizilerin Limitlerinin Hesaplanması, Diziler İçin Sandviç (Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlar, Sınırlı Monoton Diziler, Monoton Dizi Teoremi, Sonsuz Seriler, Geometrik Seriler, Iraksak Seriler İçin n’inci Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim SilmekDers Kitabı 1 (Bölüm 10)
2İntegral Testi, p Serisi, Harmonik Seri, Karşılaştırma Testleri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran ve Kök Testleri, Oran Testi, Kök Testi, Alterne Seriler, Mutlak ve Şartlı Yakınsaklık, Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi), Mutlak ve Şartlı Yakınsaklık, Mutlak Yakınsaklık TestiDers Kitabı 1 (Bölüm 10)
3Kuvvet Serileri, Kuvvet Serileri ve Yakınsaklık, Bir Kuvvet Serisinin Yakınsaklık Yarıçapı, Kuvvet Serilerinde İşlemler, Kuvvet Serileri için Seri Çarpım Teoremi, Terim Terime Türev Teoremi, Terim Terime İntegrasyon Teoremi, Taylor ve Maclaurin Serileri, n'inci Mertebeden Taylor Polinomu, Taylor Serisinin Yakınsaklığı, Taylor Teoremi, Taylor Formülü.Ders Kitabı 1 (Bölüm 10)
4Taylor Serisinin Uygulamaları, Taylor Serisini Kullanmak, Elementer Olmayan İntegrallerin Hesaplanması, Arktanjantlar, Belirsizlik Durumundaki Limitleri Hesaplamak,Parametrik Denklemler ve Kutupsal Koordinatlar: Düzlemsel Eğrilerin Parametrize Edilmesi, Parametrik Denklemler, Parametrik Eğriler ile Hesaplama, Teğetler ve Alanlar, Parametrik Olarak Tanımlı Eğrinin Uzunluğu.Ders Kitabı 1 (Bölüm 10)
5Kutupsal Koordinatlar: Kutupsal Denklemler ve Grafikler, Kutupsal ve Kartezyen Koordinatlar Arasındaki İlişki, Kutupsal Koordinatlarla Grafik Çizimi, Simetri, Kutupsal Grafikler için Simetri Testleri, Kutupsal Koordinatlarda Alanlar ve Uzunluklar, Düzlemde Alan, Kutupsal Eğrinin Uzunluğu, Doğruların Standart Kutupsal Denklemi, Çemberler Ders Kitabı 1 (Bölüm 11)
6Vektörler ve Uzay Geometrisi: Üç Boyutlu Koordinat Sistemleri, Uzayda Uzaklık ve Küreler, Vektörler, Nokta Çarpım, İki Vektör Arasındaki Açı, Dik (Ortogonal) Vektörler, Nokta Çarpımın Özellikleri ve Vektör İzdüşümleri Vektörel Çarpım, Uzayda İki Vektörün Vektörel Çarpımı, Paralel Vektörler, Vektörel Çarpımın Özellikleri, Paralelkenarın Alanı, Üçlü Skaler(karma) Çarpım Ders Kitabı 1 (Bölüm 11)
7Uzayda Doğrular ve Düzlemler: Uzayda Doğrular ve Doğru Parçaları, Bir Doğrunun Vektör Denklemi, Bir Doğrunun Parametrik Denklemleri Uzaydaki Bir Düzlem İçin Denklem, Kesişim Doğruları, Silindirler ve İkinci Dereceden Yüzeyler: Silindirler, İkinci Dereceden Yüzeyler, Elipsoidler, Paraboloidler, Eliptik Paraboloidler, Eliptik Koniler, Küreler Ders Kitabı 1 (Bölüm 12)
81.Yıl içi sınavı Vektör Değerli Fonksiyonlar ve Uzayda Hareket:Uzayda Eğriler ve Teğetleri, Limit ve Süreklilik, Türevler, Yer Vektörü, Hız Vektörü, İvme Vektörü, Türev Alma Kuralları, Bir Uzay Eğrisi Boyunca Yay Uzunluğu, Birim Teğet Vektör, Kısmi Türevler: Çok Değişkenli Fonksiyonlar: Tanım ve Değer Kümeleri, İki Değişkenli Fonksiyonlar, İki Değişkenli Fonksiyonların Grafikleri ve Seviye Eğrileri Ders Kitabı 1 (Bölüm 12)
9Üç Değişkenli Fonksiyonlar, Yüksek Boyutlarda Limitler ve Süreklilik ,İki Değişkenli Fonksiyonlarda Limit, Süreklilik, Limitin Yokluğu İçin Çift Yol Testi, Bileşkelerin (Bileşik Fonksiyonların) Sürekliliği, İkiden Fazla Değişkenli Fonksiyonlar, Kısmi Türevler: İki Değişkenli Fonksiyonların Kısmi Türevleri, İkiden Fazla Değişkenli Fonksiyonlar, Kısmi Türevler ve Süreklilik, İkinci Mertebeden Kısmi Türevler, Karışık Türev ve Teoremi Ders Kitabı 1 (Bölüm 14)
10Daha Yüksek Mertebeden Kısmi Türevler, Diferansiyellenebilme, İki Değişkenli Fonksiyonlar için Artırım TeoremiZincir Kuralı: İki Değişkenli Fonksiyonlar, İki Bağımsız Değişken İçeren Fonksiyonlar İçin Zincir Kuralı, Üç Değişkenli Fonksiyonlar, Üç Bağımsız Değişkenli Fonksiyonlar için Zincir Kuralı, Yüzeylerde Tanımlanmış Fonksiyonlar, İki Bağımsız Değişken ve Üç Ara Değişken İçin Zincir Kuralı, Kapalı Türeve Yeniden Bakış, Kapalı Türev İçin Bir Formül, Çok Değişkenli Fonksiyonlar Ders Kitabı 1 (Bölüm 14)
11Yönlü Türevler ve Gradyent Vektörler, Düzlemde Yönlü Türevler, Yönlü Türevin Yorumu, Hesaplama ve Gradyentler, Seviye Eğrilerinin Teğetleri ve Gradyentler, Üç Değişkenli Fonksiyonlar, Bir Yüzeyin Teğet Düzlemi , Bir Yüzeyin Normal Doğrusu, İki Değişkenli Bir Fonksiyonu Lineerleştirmek, Diferansiyeller, Fonksiyonun Toplam Diferansiyeli, Ders Kitabı 1 (Bölüm 14)
12Estrem Değerler ve Eyer Noktaları:Yerel Ekstremum Değerler İçin Türev Testleri, Yerel Ekstremum Değerleri İçin Birinci Türev Testi, Büküm Noktası, Yerel Ekstremum Değerler İçin İkinci Türev Testi, İki Değişkenli Fonksiyonlar İçin (a,b) Noktasında Taylor Formülü, İki Değişkenli Fonksiyonlar için (0,0) noktasında Taylor FormülüDers Kitabı 1 (Bölüm 14)
132.Yıl içi sınavıKısıtlanmış Değişkenlerle Kısmi Türevler, Hangi Değişkenin Bağımlı, Hangilerinin Bağımsız Olduğuna Karar Vermek, w=f(x,y,z)’ deki Değişkenler Başka Bir Denklem Tarafından Kısıtlandığında w’nun x’e Göre Kısmi Türevi Nasıl Bulunur?İki Katlı İntegraller: Dikdörtgenler Üzerinde İki Katlı ve Ardışık İntegraller, İki Katlı İntegraller, Hacim olarak İki Katlı İntegraller, İki Katlı İntegrallerin Hesaplanmasında Fubini TeoremiDers Kitabı 1 (Bölüm 14)
14Fubini Teoremi(Birinci Şekli), Genel Bölgeler Üzerinde İki Katlı İntegraller, Dikdörtgen olmayan Sınırlı Bölgeler Üzerinde İki Katlı İntegraller, Hacimler, Fubini Teoremi (Daha Kapsamlı Şekil), İntegrasyonun sınırlarını Bulmak, Dik Kesitleri Kullanmak, Yatay Kesitleri Kullanmak, İki Katlı İntegrallerin Özellikleri, İki Katlı İntegrallerde Alan Hesabı, Ortalama DeğerDers Kitabı 1 (Bölüm 15)
15Kutupsal Formda İki Katlı İntegraller: Kutupsal Koordinatlarda Integraller, İntegrasyon sınırlarını Bulmak, Kutupsal Koordinatlarda Alan, Kartezyen İntegralleri Kutupsal İntagrallere Dönüştürmek, İki Katlı İntegrallerde Değişken DönüşümüDers Kitabı 1 (Bölüm 15)
16Final Sınavı-

Değerlendirme Sistemi

EtkinliklerSayıKatkı Payı
Devam/Katılım
Laboratuar
Uygulama
Arazi Çalışması
Derse Özgü Staj
Küçük Sınavlar/Stüdyo Kritiği120
Ödev
Sunum/Jüri
Projeler
Seminer/Workshop
Ara Sınavlar140
Final140
Dönem İçi Çalışmaların Başarı Notuna Katkısı
Final Sınavının Başarı Notuna Katkısı
TOPLAM100

AKTS İşyükü Tablosu

EtkinliklerSayıSüresi (Saat)Toplam İşyükü
Ders Saati145
Laboratuar
Uygulama
Arazi Çalışması
Sınıf Dışı Ders Çalışması145
Derse Özgü Staj
Ödev00
Küçük Sınavlar/Stüdyo Kritiği110
Projeler
Sunum / Seminer
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi)115
Final (Sınav Süresi + Sınav Hazırlık Süresi)115
Toplam İşyükü :
Toplam İşyükü / 30(s) :
AKTS Kredisi :
Diğer NotlarYok