Ders Kitabı / Malzemesi / Önerilen Kaynaklar | - [1] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 2nd ed., New York: John Wiley & Sons Inc., (1995).
- [2] R. Kyoungsoo and S. Rahman, “Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant,” IEEE Trans. Energy Conversion, vol. 13, no. 3, pp. 276-281, Sept. 1998.
- [3] S. Heier, Grid Integration of Wind Energy Conversion Systems, John Wiley & Sons Ltd., New York, 1998.
- [4] O. Ulleberg, Stand-alone Power Systems for the Future: Optimal Design. Operation and Control of Solar-Hydrogen Energy Systems, PhD Dissertation, Norwegian University of Science and Technology (1998).
- [5] B. E. Conway, “Electrochemical Supercapacitors-Scientific fundamentals and technological applications,” New York: Kluwer Academic / Plenum Publishers, 1999, pp. 497-547.
- [6] L.P. Jarvis, T. B. Atwater and P.J. Cygan, “Fuel cell/electrochemical capacitor hybrid for intermittent high power applications,” Journal of Power Sources, 79(1), (1999), 60-63.
- [7] E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant and Hans Kahlen “Supercapacitors for the energy management of electric vehicles,” Journal of Power Sources, 84 (2), (1999), 261-269.
- [8] E. S. Abdin and W. Xu, Control Design and Dynamic Performance Analysis of a Wind Turbine – Induction Generator Unit, IEEE Trans. Energy Conversion 15 (1) (2000) 91-96.
- [9] E. Muljadi, C.P. Butterfield, Pitch-Controlled Variable-Speed Wind Turbine Generation, IEEE Trans. Industry Applications 37 (1) (2001) 240-246.
- [10] P. C. Krause, O. Wasynczuk, and S.D. Sudhoff, Analysis of Electric Machinery, Wiley-IEEE Press (2002).
- [11] A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, pp. 37-50, 2000.
- [12] K.-H. Hauer, “Analysis tool for fuel cell vehicle hardware and software (controls) with an application to fuel economy comparisons of alternative system designs,” Ph.D. dissertation, Dept. Transportation Technology and Policy, University of California Davis, 2001.
- [13] Veerachary, M.; Senjyu, T.; Uezato, K.; “Voltage-based maximum power point tracking control of PV system,” IEEE Trans. Aerospace and Electronic Systems, vol. 38, no. 1, pp. 262-270, Jan. 2002.
- [14] Y. Sukamongkol, S. Chungpaibulpatana and W. Ongsakul, “A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads,” Renewable Energy, vol. 27, no. 2, pp. 237-258, Oct. 2002.
- [15] Th. F. El-Shatter, M. N. Eskandar and M. T. El-Hagry, “Hybrid PV/fuel cell system design and simulation,” Renewable Energy, vol. 27, no. 3, pp.479-485, Nov. 2002.
- [16] M.A.S Masoum, H. Dehbonei and E.F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Conversion, vol. 17, no. 4, pp. 514-522, Dec. 2002.
- [17] W. Vielstich, A. Lamm and H.A. Gasteiger, “Hy.Power—A technology platform combining a fuel cell system and a supercapacitor,” 4(11), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Newyork: Wiley, 2003, pp. 1184–1198.
- [18] T. S. Key, H. E. Sitzlar and T. D. Geist, “Fast response, load-matching hybrid fuel cell,” Final Technical Progress Report, EPRI PEAC Corp., Knoxville, Tennessee, NREL/SR-560-32743, June 2003.
- [19] A. Emadi, M. Ehsani and J.M. Miller, Vehicular Electric Power Systems, New York: Marcel Dekker, Inc., 2004.
- [20] M.C. Williams, J.P. Strakey and S.C. Singhal, U.S. Distributed Generation Fuel Cell Program, J. Power Sources, 131 (1-2) (2004), 79-85.
- [21] M.Y. El-Sharkh, A. Rahman, M.S. Alam, P.C. Byrne, A.A. Sakla and T. Thomas, “A dynamic model for a stand-alone PEM fuel cell power plant for residential applications,” Journal of Power Sources, vol. 138, no.1-2, pp. 199-204, 2004.
- [22] A. Emadi, K. Rajashekara, S.S.Williamson and S.M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. on Vehicular Technology, 54 (3), (2005), 763-770.
- [23] M. Amrhein and P.T. Krein, “Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions, including power electronics,” IEEE Transactions on Vehicular Technology, 54 (3), (2005), 825 – 836.
- [24] M.J. Khan, M.T. Iqbal, Dynamic Modeling and Simulation of a Small Wind-Fuel Cell Hybrid Energy System, J. Renewable Energy 30 (3) (2005) 421-439.
- [25] H. De Battista, R.J. Mantz, F. Garelli, Power Conditioning for a Wind-Hydrogen Energy System, J. Power Sources, Article in Press (2005).
- [26] H. Gorgun, Dynamic Modeling of a Proton Exchange Membrane (PEM) Electrolyzer, Int. J. Hydrogen Energy, Article in Press. (2005)
- [27] D.A. Bechrakis, E.J. McKeogh and P.D. Gallagher, Simulation and Operational Assessment for a Small Autonomous Wind-Hydrogen Energy System, J.Energy Conversion and Management 47 (1) (2006) 46-59.
- [28] M. Uzunoglu and M. S. Alam, Dynamic modeling, design and simulation of a combined PEM fuel cell and ultra-capacitor system for stand alone applications, IEEE Trans. Energy Conversion, Vol. 21, Issue 3, 767- 775, (2006).
- [29] O. C. Onar, M. Uzunoglu and M. S. Alam, Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor based hybrid power generation system, Journal of Power Source, to be published, (2006)
|